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I. INTRODUCTION

In this note, all notation and terminology not otherwise explained are as
in the treatise [3]. Let G be a locally compact Abelian group, written multi
plicatively and with identity element c. Let X be the character group of G.
Let M(G) be the [convolution] measure algebra of G. Let E" be the Dirac
measure assigning the mass I to the point a E G. For fL E M(G), let (l denote
the Fourier~Stieltjes transform of p., i.e., the function on X defined by

for X (C X. (1)

G. L. Seever has asked the writer whether or not every G with more than
one element admits a measure fL, not of the form O:E" with I 0: 1= I, for
which we have

I (l(X)! = I for all X EX. (2)

The question of finding such measures has a long history, and we here offer
a modest contribution by constructing a certain class of purely discontinuous
measures with property (I).

We have greatly benefitted from and are grateful for conversation and
correspondence with Irving Glicksberg, G. A. Hively, David Ragozin,
K. R. Stromberg, W. G. Sullivan, and J. L. Taylor.
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2. SOME GENERALITIES

For fL E M(G), write fl for the measure adjoint to fL: (iCE) fL(E-l) for all
[say] Borel sets E C G. The identity (2) is clearly equivalent to the convolution
identity

(3)

or
fL- 1 fl. (4)

This follows at once from the uniqueness theorem for Fourier-Stieltjes
transforms (see, e.g.. [3, (31.5)]) and the identity

(5 )

Let fL E M(G) be such that fl fL. Define exp(ifL) as usual by

(6)

It is obvious that

(7)

and so in view of (5), exp(ifL) satisfies (2).
K. R. Stromberg [letter to the writer] has given another construction.

Suppose that fl c~. fL and that ,I fL~ I. Define

]J (8)

It is easy to check that v2 Ec -- fL2 (see, e.g., [3, (21.19)]), and so

En =~ (v + ifL)(V -- ifL) -~ (V -; ifL)(V + ifL)-·

That is,

(9)

(10)

satisfies (3).
Glicksberg [1], in giving a very short proof of a theorem of Reurling and

Helson [2], has pointed out that if fL satisfies (3), then the discontinuous
part fL<l of fL also satisfies (3). For nonzero continuous fL, Stromberg's
measure (10) obviously has a nonzero continuous part.

In his monograph [4], J. L. Taylor has classified the invertible elements
in M(G) [4, Theorem 8.2.4]. For the case G = R, Taylor [private communi
cation] has provided the following classification of all fL E M(R) such that
fl = fL-l. Let TJ be the measure f - EO' where f denotes the absolutely
continuous measure with Radon-Nikodym derivative f(x) = 2(217)1/2 e-X
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for x c:;; 0, f(x) = ° for x > 0. [The transform of this measure is
(l + it)(I - it)-l.] Let k be an integer, and 0 any measure in M(R) such
that 8 = o. The solutions of (4) in M(R) are exactly the measures

7)1; * Ea. exp(io), (II)

a being any element of R. Quite probably [4, Theorem 8.2.4] can likewise
be used to find all solutions of (4) for an arbitrary locally compact Abelian
group G.

3. CERTAIN SOLUTIONS OF (4)

We carry out a specific construction of solutions of (4) in several steps.
We look at non-Abelian G as well.

(3.1) Let G be finite and Abelian. Then M(Gt consists of all complex
valued functions on X, the group X being of course isomorphic to G. The
functions ep on X of the form (CXEaY' for I cx i = 1 and a EO G are exactly the
functions of absolute value 1 on X such that ep!cP(l) is a character of X.
As there are just card(X) characters of X, there are evidently c solutions of
(4) on G not of the form CXEa •

(3.2) Let G be finite and non-Abelian, with [finite] dual object };.
Solutions of (4) on G are exactly the functions I on G such that /(a) is a
unitary operator on Ha for all a E Z [For the notation used here, see [3,
§27]). For the function [or measure] CXE", the Fourier transform at a EO};

is the particular operator cxU~o). For each a, there are only card(G) operators
UAO), and so there are c functions on G not of the form CXE a that are solutions
of (4).

(3.3) Now take G to be the additive group Z of all integers, with the
discrete topology. The character group T of Z is realized as the multiplicative
group of all complex numbers of absolute value 1. We now choose: a number
p EO ]1, 2]; a number y in ]0, 1[; a real-valued absolutely continuous function
Ion [-7T, 7T] such that III c:;; y,f(-7T) = f(7T), and!, is in BIl(-7T, 7T). Let g
be the function (I - f2)1/2 (nonnegative square root). Finally, define the
function ep as I + ig.

It is clear that ep is absolutely continuous and that ¢' EO Ev ( -7T, 7T). Regard
ep as a function on T, ep(eit ) = ep(t) for -7T c:;; t < 7T. For k EO Z, k F 0, we
have

¢(k) = J (eit)-k ep(eit) d;'(t) = _1_ rr e-iktep(t) dt
T 27T _

= _1_. IT. e-iktep'(t) dt = ~ (¢')" (k). (12)
2mk -T. lk
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Write q for the number pj(p - 1). The Hausdorff-Young inequality and (12)
imply that

2:: I ¢(k)j
l.cZ

I' ,1/1; I , , 1/'([

(2:: I k .-71) (2:: I(</>'Y (k)lq)

A· (J~I f(ei/Wdt)]/v UJ. (13)

From (13), we see that </> is the sum of its own Fourier series:

</>(eit ) = 2:: ¢(k) eUt.
kcZ

(14)

Let fL be the measure on Z [i.e., the element of 11(Z)] that assigns the mass
¢( -k) to the point k for all k E Z. Then fl is the function </> on T.

From our construction of </>, it is clear that the range </>(T) of </> can be
any closed arc of length less than 7T lying in the upper half of T. By considering
</>(eiteiS), we can position this arc wherever we like, and by taking </>3 for
example [which also has absolutely convergent Fourier series], we can
obtain any arc we wish as </>(T).

For M(Z), our final result is the following. Let C be any closed arc con
tained in T [C == T is not excluded]. There exists a measure fL E M(Z) such
that f1(T) = C.

(3.4) Now let G be any locally compact group containing an element a
of infinite order. The closure H of the cyclic subgroup {a": k c Z} is either
compact or topologically isomorphic with Z (see e.g., [3, (9.1)]). Note that H
can be any monothetic compact group. Let It be any measure on Z as in (3.3)
and let fLfl be the measure on G such that fLll({a'}) fL({k}) for all k E Z.
It is easy to check that (fLIl)- (fLH)-l [in the algebra M(G)]. Thus we
obtain a large class of solutions of the equation (3). For the case of Abelian
G, a few comments about the range (fLflt (X) may be in order. This set
consists of all the numbers LkEZ fL({kJ) e il.! for which the function a l ;.. ell.!

(k E Z) has a continuous extension over H. The cit for which this holds can
be any infinite subgroup Waf T (see [3, (25.12)]). Thus the range (fLH)~ (X)
is the set fl( W), which is dense in the arc (l(T), but seems difficult to describe
completely.

(3.5) Finally let G be a locally compact torsion group. Finite G's are
dealt with in (3.1) and (3.2) above. If G contains an infinite Abelian sub
group, then G contains an infinite ascending chain of finite Abelian sub
groups. On each of these, construct a measure as in (3.1). A weak limit point
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of these measures can be found which will provide nontrivial solutions of (3).
An alternative construction is to repeat (3.3) for Z(poo), and direct sums of
countably many cyclic groups of finite order. This could be done, and we
leave the details to any interested reader. If G contains no infinite Abelian
subgroup [already something of a rarity], then we can only use (3.2), without
going far afield into the algebraic theory of groups.
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